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ABSTRACT

A generalized methodology for the construction of non-
standard higher-order finite-difference time-domain
schemes, as well as their application to complex electro-
magnetic problems in curvilinear non-orthogonal coordi-
nate systems, are presented in this paper. As a conse-
quence, a new class of low-dispersion operators is de-
signed for the approximation of spatial and temporal de-
rivatives. Their extension to curvilinear non-orthogonal
coordinates is attained by a higher-order variation of the
covariant and contravariant vector component theory, in
which all metric terms are taken into account. Finally, the
proposed method is validated by the analysis of diverse
multiport microwave structures with realistic features.

INTRODUCTION

The vast technological growth observed during the past
decades in microwave industry, continuously increases the
requirements for analysis and design of complicated
waveguide systems, such as couplers, filters, phase shifters
and generally multiport structures. Due to their great im-
portance, these components have been an issue of inten-
sive scientific research by advanced numerical techniques
(MoM [1], FEM {2}, FDTD method [3}, mode matching
method [4]-[5] etc.). Unfortunately, they all have severe
shortcomings that limit their applicability. For instance,
the discretization of circular cross section waveguides or
arbitrarily inclined slots by means of Yee’s algorithm,
which, appears to be the most popular of the numerical
methods, produces low accuracy results and significant
dissipation and dispersion errors [3]. On the other hand,
the traditional ways of excitation necessitate the elongation
of uniform parts. These deficiencies may be overcome via
highly refined meshes or generalized unstructured lattices
[6], which however, have prohibitively excessive demands
in CPU time and memory capacity.

It is the purpose of this paper to introduce a new non-
orthogonal higher-order FDTD methodology, based on
curvilinear nonstandard schemes, for the feasible and effi-
cient treatment of complicated 3-D waveguide structures.
A class of higher-order dispersionless operators for the

exact approximation of spatial and temporal derivatives is
constructed in a general curvilinear system. The basic
premise of the algorithm lies on the representation of elec-
tromagnetic fields by means of a modified higher-order
covariant and contravariant strategy, which stems from an
efficient solution of the div-curl problem. Apart from the
leapfrog time integration process, the general Runge-Kutta
operators are alternatively utilized, whereas a new self-
adaptive compact central difference procedure treats the
inevitably widened spatial stencils. Consequently, reduced
spurious dispersion, anisotropy and lattice reflection errors
are obtained. The proposed methodology was applied to
the analysis of various multiport waveguide junctions in-
corporating discontinuities (slots and irises).

THE NONSTANDARD HIGHER-ORDER
FDTD SCHEME

The innovative methodology is essentially based on the
representation of the spatial and temporal derivatives by
means of the accurate nonstandard higher-order (HO) dif-
ferencing procedure. The proposed approximators are,
respectively, given by
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where u belongs to a general coordinate system (u,v,w),
coefficients ¢, are chosen to eliminate the appearance of
any anisotropy deficiencies and D, (A=5u,38u) is the
three-dimensional nonstandard operator, defined as
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The m(kA) and m,(3¢) are correction functions (of sinu-
soidal form) selected to minimize the inevitable error gen-
erated by the derivative approximations in (1) and (2),
respectively, and also to significantly enhance the tech-
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Fig. 1.  Graphical representation of the curvilinear finite differ-

ence operators. The numbers at the faces indicate the sign of
summation in (4).

nique’s dispersion and dissipation features. The difference
operators of (3), d? for p = 1,2,3, are described according
to the geometry of the elementary cell (Fig. 1) by the fol-
lowing expressions
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For brevity, in (4) only the respective lattice space in-
crements towards the u,v,w directions are indicated (i.e.
the notation -A/2,0,A means u#-A/2,v,w+A). The crucial g
parameters of (3) ensure algorithmic stability and struc-
tural well-posedness and are calculated via

g =p+s1-p)/3, q,=s(-p)/3,

g3 =1-p~-2s(1-p)/3,
with
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while the coefficients R,, Rp and R, are mathematically
expressed in terms of the wave number components, as

R, = cosk, +cosk, +cosk,, —3, (62)

Ry = cosk, cosk, cosk,, ~1, (6b)

R = L(cosk, cosk, + cosk, cosk,, + cosk, cosk,, — 3) .(6¢)

Another attribute of the nonstandard HO FDTD
schemes, that has to be dealt with, is the widened spatial
stencil near perfectly conducting interfaces and absorbing
walls. This difficulty is circumvented by a general class of
self-adaptive compact operators which guarantees the
thorough modeling of complex applications. In particular,
they can be expressed (in central or nonsymmetric version)
by the Hermite formula

S bl renin)=0

where a,, by, c, are unknown calculable real coefficients.

Finally, the new discretization methodology is effec-
tively combined with the fourth-stage Runge-Kutta inte-
gration scheme (except of the leapfrog one), which stag-
gers the variables in space but not in time. Generally, it is
given by
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in which E is the spatial discretization matrix and M the
order of the integrator. Being conditionally stable and un-
affected by the presence of compact operators as its sec-
ond-order counterpart, this integrator has proven to be 1.4
times more efficient than the fourth-order leapfrog one.

HO OPERATORS IN CURVILINEAR GRIDS

The adjustment of the aforementioned differencing
scheme to a general curvilinear coordinate system is not
straightforward, since the basis on which the field quanti-
ties are expressed, affects the consistency of the numerical
solution of Maxwell’s equations. An improper selection
may give rise to Cristoffel symbols, which cannot be accu-
rately computed [7].

In order to overcome this strenuous div-curl problem,
we develop a new algorithm incorporating a fully conser-
vative HO rendition of the covariant/contravariant theory,
which takes all metric terms into account. For this purpose,
a Helmholtz-type decomposition, which computes the de-
sired electric or magnetic vector via the projection of the
curl onto the space of divergence-free vectors, is used [8].

Assuming a general nonorthogonal right-handed curvi-
linear coordinate system (u,v,w) and that this mapping is
smooth enough, any vector F can be decomposed with
respect to the contravariant a',a%a’ or the covariant
aj,a,,a; base system as
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The quantities /' and f; denote respectively the contravari-
ant and covariant components of F which, due to their
reciprocity, satisfy the relation a; . & = §; (§; is the Kro-
necker’s delta).

Derivative approximation described in such a general-
ized coordinate system, yields an accurate HO curvilinear
FDTD curl operator, which is subsequently applied to
Maxwell’s equations. Hence, the general matrix form of
Ampere’s and Faraday’s law becomes

(t+1a " =(1-1A Je2 + 67|z 72] ()
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where ¢ denotes the covariant electric components and A,
B, and G, G%, derivative and metric tensor operators,
respectively. Therefore, the curvilinear div-curl problem,
which is reduced to the computation of a vector field F
assuming that its curl and its divergence are known, can
now be efficiently treated by our algorithm.

Finally, the stability criterion of our method becomes
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ANALYSIS OF MULTIPORT STRUCTURES

The presented generalized nonstandard higher-order
FDTD schemes were implemented for the analysis of di-
verse three-dimensional realistic multiport waveguide
structures. For this purpose, a pulsed modulated excitation,
which imposes the source plane several cells away from
the ABC’s plane in order to separate incident and reflected
fields, was used [9]. Considering a distance of d, cells
from the boundary, E, is expressed as

E;’:}t = FDTD upa’at‘eJrL(u,V)ZN_1 sin(2aft — B,w)

where L(u,v) represents the pulse’s spatial profile. Hence,
no artificial elongation of uniform parts is needed and an
initial significant reduction in the computational resources
is obtained. It is mentioned herein that the structures are
terminated by higher-order versions of existing PMLs
[10]-[11], which exhibit much better reflection and disper-
sion properties, compared to the conventional ones.

The first application was a T-junction consisting of or-
thogonal waveguides, where the connection between the
feeding and the coupling parts is obtained through an in-
clined slot of angle @ with respect to the coupling part’s
axis. The waveguides’ dimensions are 22.86x10.16mm?
whereas the slot’s width and thickness are 16mm and
0.8mm, respectively. Fig. 2 depicts the computed coupling
coefficient, C, between ports 1 and 3, which is defined as
20log|S;;|, with S;, being the corresponding S-parameter.
The efficiency of our algorithm, as compared to the refer-
ence Method of Moment solution of [1], is very promising,
Furthermore, the improved accuracy of the proposed
higher-order FDTD method, with a simultaneous signifi-
cant reduction of the computational grid, is illustrated in
Fig. 3.

The magnitude of various S-parameters of a six-port
cross-junction (each port is orthogonal with dimensions
15.799x7.899mm?) is illustrated in Fig. 4 and compared
with the results of [4]. Again the mesh reduction and there-
fore, the overall gain in computational time, are remark-
able. Finally, the variation of Sy;-parameter for a curvilin-
ear iris-coupled resonator, is analyzed. Fig. 5 demonstrates
the promising accuracy and memory savings (almost 80%
of Yee scheme) achieved by the HO FDTD scheme.

CONCLUSION

In this paper, we have mathematically established and sys-
tematically derived a class of dispersionless nonstandard
higher-order FDTD operators, in general non-orthogonal
curvilinear coordinate systems. The div-curl problem that
such an approach involves, was overcome by means of a
higher-order covariant and contravariant theory that con-
siders all metric terms. The proposed method has proven
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to be remarkably precise and computationally inexpensive
when implemented to the analysis of a variety of multiport
waveguide structures, incorporating modern technological
features such as inclined slots.
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